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AN BLEMENTARY REVIEW OF THE MATHIEU=-HILL EQUATION OF REAL VARIABLE
BASED ON NUMERICAL SOLUTIONS

ABSTRACT

A description is given of a large number of trajectories of Mathisu's
' equation made on the BNIAC in 1948 and available at BRL. A large chart
describing the behaviour of the solutions is given. The occasion is taken
to review the essentials of the Mathieu theory for ths benefit of the

occasional user-procesding from the point of view of an inspsction of the
numerical data,
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INTRODUCTION

In a number of problems of mathematics and engineering there arises
the Mathieu equation

Py/as® + (a - 2q cos 2s)y = 0, (1)

vhere a and q are constants and the factor of 2 under the cosine symbol
is used hrg%.y for historical reasons. A number of alternative forms

may convey the physical significance of a particular probha somevwhat more
clearly: e.g., the periodic coefficisnt may be written as n“(1 + k cos 2z),

N2(1 + kcos 2), (1 + kcos Nz), etc. When generalized by substituting any
periodic (usually even) function J(z) for the cosine, the equation is
called Hill's equation. The subject may be the outset divided in two parts:
s might be either real, or complex (e.g., if 3 is pure imaginary, this is
equivalent to replacing cos by cosh), e shall here consider only the
former case; then the subject is a generalization of simple harmonic motion
and more particularly, of the theory of the vibrating string, though it
differs from that simples theory considerably. Thus, in the theory of
hamonic motion the only parameter (angular frequency for each mods) can

be readily made 1 by suitabls choice of the scals of £; but when the
“spring stiffness" term acquires the character of periodic oscillations,

no fewer than two additional parameters must be comsidered (e.g., a and q,
the scale of s having been fixsd arbitrarily). The solutions exhibit a
considerabls variety; depending upon the combimtion of & and q they may

be stable, unstable or periodic; their deseription requires a sascription
of the a-q plame, vhich may be divided into regions of stability and in-
stability. (Cf. Fig. 2.). The Mathieu equation was introduced (im 1868)

in the study of the vibrations of a membrene; it is therefore nmatural that
these equations possess an eigenvalus character. This character is exhibited
by a definite periodicity of ocertain solutions belonging to the border-lines
between the stable and wmstabls regions in the a-q plane. In a number of
problems, however, this eigenwlue character is not of the essence. The
subject, therefore, may be further divided into two parts: the bomdary-
value problems (i.e., essentially the determination of those a and § which
would yisld solutjons of specified periodicity) and "what may be called

initial-valus problems®.”

There exists an extensive litermmture on these equations; and 1:1
particular, a wll-nigh exhaustive oompendium was givea by Mclachlan

in 19547. Treditionmally, the approach has been via the use of infinite
series; as a result, the thorough study of the subject encompasses much
auxiliary detail (such as recurrence relations, proofs and comparisons of
convergence), the labor of which may easily distract and discourage a

* Reference 1, page 9

1 Superscripts refer to references.




mere occasional user of Mathieu theory; while often_ "a formal tolution ....

is merely a stepping-stone to quantitative results®?., The modern growth

of high~speed computing machivery (even though it should not be confused

with mathematics) cannot help but exsrt soms influence on the approach to

the problems of this sort; thus, it should certainly de-emphasise the use

of infinite series as a mere means_to obtaining a solution of a differential
equation. Thus, in 1948 Brillouin3 emphasised that the numerical approach

is particularly fruitful in dealing with Hill's equation. In fact, one of

the earliest uses of ENIAC at the University of Pennsylvania was a systematise
compilation of some 200 trejectories of the Mathieu equation by Brainerd et ald,

The Ballistic Research hboratorioas had computed on the ENIAC at the Aberdeen
Proving Ground some 1300 additional trejectories. These results contain a
wealth of infomation; and it is the object of this report to present at least
a smll fraction of this information.

In introducing these numerical results it appears that the necessary
explanations can be easily extended to comstitute; to an occasional user of
Mathieu theory, a rather self-sufficient exposition of the essentials of this
theory; i.e., it can contain the principal proofs as well as an "empirical®
description of the behaviouwr of the solutions, as fixed by the parameters
& and q and the initial conditions. Since the method of solving a
differeatial equation numerically, by its nature, represents the initial-
valus approach, the eigenvalus character of the equation need not be
presuzed & priori, but arises nmatumlly,

PRELIMINARIES

The solutions of (1) possess two useful fundamental properties: -
they can be "translated® and "reflected".

Because of the periodicity of the coefficient in (1), if y(s) is
a solution, its translation by n, i.e., y(s + x), is also a solution:
for this represeats merely a shift of the of s by », vhich leaves
(1) wmshanged. Note that a translatiom by n/2, or a shift of the origin
by =/2, represemts a change from +q to -q, i.e., changes (1); and therefore
canno$ be allowed if a solution of (1) is sought.

The second property is bro owt particularly clearly by the even
form of the coefficient of y in (1); of y(s) is & solution, its reflection
about the y-axis, i.e., y(-3), is 2190 a solution. In particular, if
y'(0) = 0, y(=8) = 'y(s’, and if y(0) = 0, y(~8) = -y(s); i.0., there exist
solutions even and odd about s = 0, Jote that the possible use of sime
for cosine in (1), i.e., a shift of the origin by n/l;, wuld hawe obscured
this property: the reflection would s$ill be possible, but about =/}
rather than 0, i.6., W wuld in effect Inve reverted to (1). Mote also
that this property must be dropped if J(s) in the Hill's equation is not
even about any s.
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Just as vranslations by & can be extended to 2x, 3w, etc., the
reflsctions may be made about any sz about which the coefficient of (1)
is even; i.e., about s = 0, n/2, n, 3n/2, etc. Similarly, there exist
solutions even and odd about these values of s. A reflaction about n/2
is equivglent to comdbining a translation by n with a reflection; i.e.,
yo(s =n/2) = v (n/2 - 8) 18 equivalent to y,(s) = yq (v -s8) oOf

course, a solution even about s = O might be odd about § = n/2, and
vice versa. -

A combination of y(3) with its reflection and/or trenslation might
constitute a complete solution. However, more powerful properties are
needed if, given a numerical solution in a finite interwal, we are to
extend it indefinitely., Thus, y(s) and y(s + n) are not linearly
independent if y(s) has a period of n; y(s) and y(-s) are not linearly
independent if y(2) is either even or odd; the solution might be non-
periodic; or it might have an wncomfortadly long perdod.

NORMAYL, (FLOQUET) MODES

It was long perceived by tr: zriromomers, and it was confirmed
in 1883 by Floquet, that there -xists a solution of the form

y(s) = **g(s), (2)

where y is constant and #(s) is periodic, with the same period (=)
as that of the coefficient in (1). .Such a solution can bs readily
extendsd indefinitely; and its reflection usually completes the
solution. ,

A proof of this important relation wuld be desired evem by the
oocasional student of Mathieu theory. However, it would avail him
little to werity (2) by substituting it in (1): this would only lead
a differential equation im @, which is burdened by the presence of the
wmiisowa 3 - and 18, in faot, the eigenvalue equation for u (or for a);
the periodicity of ¢ would still be far from obvious. The fact is -
in spite of the elegamce of (2), - that y and # are not as basic
conoepts as the nwaber e¥®, The proof procesds as follows.

Consider axy two independens solutions, say g(s) and h(s), amd
let us txy to construct 2 normal mode out of these twos i.e,, let it be

¥(s) = Ag(s) + Bu(s), (3)

where, normalisation aside, only the ratio of the constants, A/B, is
of interest. Bvaluate (3) at s + n, Observe that by the first
fwmdanental property of solutions y(s + n), g(s + n) and h(s ¢ x)
all are solutioms, and hence can be decomposed in tems of g(s) and
k(s). In particular, put

63 + %) = gie(s) + gph(s), h(s '+ %) = Bg(s) Bn(s), ()

7
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wlere the coefficients g, g,» h; and h, may be readily determined, by
differentiating (L) and putting s = 0. Then

7(s + %) = (hgy + By Je(s) + (hgy + B(a)e  (5)

On the other hand, if y(s) is of the form (2), we must have
(s + ﬁ) = Sy(s) (6

where § = ¢#*, Now, (s) and (3) amovat to (6) only if

lg, + By = &5 |
A‘Z + th = BS, : (7)
widch, however, can be solved for the ratio |
A/B=1,/(8 - g) = (5 - b,)/g, (8)
only if ' '
g =S
1 g, "z - s = (g + By)8 + (gyhy = gp1y) = 0. (9)

It remains only to- ao1vo'(9), to define p as (1nS)/x, to introduce

#(s) as ¢ ¥y(s) = where, of course, y(s) is given by (3) and (8) - and

to perform the ouy demonstration that g(s + n) = @#(s). The statement

thea iss- given any g(s) and h(s), it is alwmys possible to determine

p and #(s) so that (2)willdsa solution. The inwariance of i and §(s)

vith respect to the choice of g(s) and h(s) w, for our present pnrpoees,
be acospted as obviou. Lo .

The md.rvmm thlt tho l"loqut thoozyia a g'nounntion of
the translatability of solutions, and that (6) is a simpler statement of
this theory than (2). The statement miy very well be: given any g(s)
and h(s), it is alwys possible to determims S and the retio A/B, and to
construct y(s) such tat (6) will hold, Note that the reflectability of
tha solutions has not been med. ,




FORMATION OF THE SECOND SOLUTION

Obviously, if the two values of S from (9) are distinct, they
determine the two normal modes, say,

yl(z) - eulz dl(z) and yz(i) - ep.zz ¢2(z),

ths superposition of which completeés the solution. This would also
complete the theory in the very general case of a Hill's equation with
a non=-even J(z). Note that, since the translatability of the solutions
has been used up, ya(z) cannot be got by a translation of yl(z ).

Considerable simplification is now afforded by the evenness of the
coefficient of (1): viz., a second solution can be also obtained a= a
reflection of the first. In that case p, = =, and 12(5) - dl(-s).

The first condition means that the two values of S are reciprocal, or
that the last tem in (9) must be 1; this indsed can be shown to be the
case for any choioce of g(s) and h(ss. but in practice this ensues even
more maturelly - vis., it becomes apparent as soon as a practicable choice
of g(s) and h(s) is made. The second condition, again, can be proved; but
in practice it follows naturally when the second solution is taken to be
a reflection of the first - which assumption, indeed, is in agreement with
‘ the first conditiom.

A. case in which the reflection of a normal mode fails to furnish
& linsarly independent solution is a peculiar orphan of the bowmndary -
valus part of the Mathieu theory, and will be discussed separately.

PRACTICAL COMPUTATIONS

Whittaker and ‘hhtson6, vwhose proof of the Floquet theory is pare-
phresed above, make no -commitment about the choico of the auxiliary
functions g(ss and h(s). Molachlam pointed out™ the convemience of using
the even and odd functions, say u and v, vith what may be called wmitary
conditions: u= 1, u' = 05 v= 0, v = I} in which case g, = u(x) is the
s, and (9) becomes

8-B+1.0, S=Fs /B-1 (10)

ulouhz-v'(u

where B = u(n) = v*(x); but he discussed the theoretical caleulations of
8 much as though the numerical computation of both u and v had indeed to
be carried over the interval Oc<s¢sa. In ocomputing practice, of course,
such work can be halved in a nuwber of ways. Thus, in the awailable

caloulations”*!s5 the symmetry of uand y 1s utilised to limit the

* Beference 1, pp. 23 - 2.
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calculations to the interval 0¢ £ {n/2, the remainder being furnished
by the reflections about s = 0; the interval them is -n/2Zsz21n/2, and
the unitary initial oonditions occur in the middle, rather than at the
beginning of the interval. Then (9) assumes the form

$2-.2(24-1)5+1=0, S=24-1¢2/A4 -1), (11)

vhere A = u(n/2)v' (n/2). Incidentally, a running check may then be kept:
that the Wromskiam, uv' - u'v, remains 1; this concerns the very important
(but now, it is hoped, largely historical) question of the reliability of
the highespeed computing machines, Note that the two values of S are always
reciprocal.

In retrospect it appears that if and when additional computations
are to be mads, at lsast three alternative procedures ought to be considered.
Two of these, much alike, are obvious: ws may utilize, instead of the

try, the fact that u(n) = v'(n), i.e., compute either only u(s) or only

s), but for the full period 0Ls< n. This will forego the check om the

Wronskian, but might save time in the subsequent handling of the machine
data and ia re-setting the machine for the second set of initial conditionms,
or some capacity of the machine, The second auxiliary function, when needed,
can be gotten by the reflection of the first about n%; €.gey a8 U(z = n/2) =
u(n/2 = 3), vhich is the same as reflection about 3 = O and trenslatiom.

The third possible procedure is mentioned, as a matter of curiosity,
for the reason that its details have somewhat better physical significance
in relation to certain other problems ccvered by the Mathieu theory: if

u+ div = rei? only r{s) need be computed by integrating a differential
equation, O(SS being easy to compute by quadrature.
Available computations are limited to the equations (1), but the

msthods cnaémse63 s of course, are applicable to amy Hill's equation, as
well., It is hoped that they will also prove useful im exteading the
aumsrical work to the other Mathieu equation (with cosh instead of cos),
vhich belomgs to the theory of functioms of complsx variable.

CLASSIFICATION OF SOLUTIORS
2

Three principal cases should be distimguished accordingly as B is
greater than, equal to, or less tham 1.

(a) Umstable™ Solutioms. B2 1.
Tils should be subdivided iato
(1) the simpler case, BE71, both S70, The physical

sigaificance is that u (or v) either grows more or less
nondAnically, or, if oscillatory, has completed (or is

* The instability "in the largel i.e., the fact that amplitude of y 1s
umbounded, should not be confused with what may be called "local in-

stability®, which will be discussed preseutly.
10




(2)

about to complete) at lsast one (or 2, 3, etc.) period;

and that it is oscillating further than at the start.

In fact, the essence of the phenomenon is resonance. g

is real (and is always reckoned as positive, i.e., is taken

for the growing mods). One nomal mode grows, and the

other shrinks, exponentially. It can be established empirically

. (and confirmed theoretically, with some effort) that the

combinations of the parameters a and q at which this situation
occurs constitute a region, om the a=-q chart, which converges
(for q»0) to the poimt a = n°, n even integer. These may be
called "even-order regions of instability". A special such
region is the zero-order region, or the region of “static!
instabllity, characterised principally by a negative coefficient
a; incidentally, as O does not assure "static" instabilitys
with certain values of q oscillations may be stable even with
negative a (cf. Fig. 2).

The case of E< -] is not much more complicated. The physical
significance is that u has completed approximately a half-
integral number of periods, amd the oscillations are growing;
after the mext interval n of g ;, the resonance will be
conspicuwus again. Both values of S are megative; but now,

in order to accoun't. for a negative S = e“n, p must have an

imaginary part of 1 (or generally, am odd integer). The

factor ™ is therefore complex; and since u and v - in
these computations, at least - are real, the function @(s)
must be complex. It is conventional in this case to
consider only the real part of u, and to combine the factor

oH{IW)S (Lrare Ty s the imaginary part of u) - which factor
has a period of 2n - with the complsx @ of period n into a
real function @(s) of period 2n. Thé regions in which this

ococurs converge to a = '2’ a an odd integer,.and my be
called "odd-order regions of imstability®. The most rtant
region of Mathieu-type instability (the first-order one
belongs to this class. '

An inspection of the mechanism of the growth or shrimkage
of the oscillations, as well as of the phase-relatioas imwvolved,
yields a comsiderabls insight imto the physical significance
of Mathieu theory. This will be attempted presently. The
essence of the phemomenon is the temdemcy to lock imto a
resomance at am angular frequemcy 1, 2, 3, ....o(iee., a
multiple of one half of the frequency of cos 2s), rather thaa
at what may be callad "expscted matural" amgular frequency £3/2;.

If the factor of 2 under the cosime symbol ia (1) is

aittodl‘, the numbers associated with the instabilisy regioms
(1..0’ their ‘ﬂ‘mr fmmnci‘s’ beconme 0, m’ 1’ 3/2’00000’
i.6., one might thea speak,: rather, of "alf-integral® and
®integrel® orders of imstability. b

u
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Both cases can be merged6 if Floquet theory is applied

to the interval 2n (rether than n) of s; although that
procedure fails to bring out the periodicity of #(z) in full.
(b) Stable Solutioms. B°<1,' While the magaituds of u(r), or of
vi(n), 1s less than at the start, the physical significamce of that is mot
& damping of the oscillations, but rether a change of phase; im fact, the
essence of the phemomenmon is the absence of the resomamce. Mathematically,
the solutions are "bounded"; although im certain regioms of g the beats can
produce an impression of %local" imstability, amd might lead ‘to very large
(viz., perhaps umexpected) values of uor v. I.e.; while the boundedness
assures that a regime of local, or apparemt, imstability will always be
followed by a regime of local dampimg, the practical significance
(presumably, especially im a close proximity to the imstability regioms)
night be akin to instability,

The two values of S are complex conjugates;' bud they are
still reciprocal; and hemce the magnitude of S is 13 i.e.;, the real part
of y is O, I% is comventiomal to desigmate such an Imaginary p by -1,

f real. Thamn:hgofsheip“uamutionhthcco-plcpmothrough |
angle Pn. The factor ¢iPE is complex; and evem if the mormal modes were rea|

(vhich, it will be preseatly showm, cammot be ths case), @(s) must be

complex™, The valus of B as determimed from S, of course, may comtain

an arbitrery evea integer; amd simce there are two opposite values of B,

B is maturally confined to the range 0<f <l. In facht, a valus of B = 1 ’
means simply a reversal of phase of y(n) as compared with y(0); this

means & change im the number of periods of y(s) per period of s by a

half-integer, or a change of the angular frequemcy of 1: which is

precisely what happeas if we. move across the stability region om the

8=q plane fiom one imstability regiom to the adjoining ome.

If 15 a rational fractiom p/s im its lowess Semms, after-
‘and only after - the increment 2sx of s the wector % will retum %o
ids starting positiom; 1.e., y(s) is theoretically periodic, but its
period may be extremely large. If B is irratiomal, y(s) is, strictly,
aom-periodic, However; it would seem that if a very long (complex)
helix of y(z) were available, ome could detect im i% a mumber of
approximate periodicitiss, as an irretiomal § may be approximated by
& sequence of retiomal aumbers..

(o) Characteristic Comditions. B> = 1. This importamt border
line case is a rather exclusive domain of the bowmdary-value pars of
Mathisu theory. Nevertheless, swo classes of solutioas mus$ be
distisguished. - :

* Sustitution ia (1) shows #tE0 42 § is real, which is impossible.

12
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If a%
c R ]

us=0
ul = 0
v=0

vt=s0

9%

(1)

Ohncterhtic Solutions - (the Mathisu fumctioms), which
are periodic. I¢ is these soluticms which have beem the
nore extensively studied; im fact, the whole boumdary-
value~problems part of Mathie: tlo: ry amoumts to a search
for solntiou of this specifiso, (2 -iodic) character,

The’ plv!:l.cal significance of such solutions suggests

."~1taol.f readilys if u(n) or vi(n) is &'l the imitial
, oonditiou for the interwal n«z £2n might bé practically
" 1demtical with the conditioms at £ =.0; in fact; the second

mscessary comditiom, that u'(r) or v(n) is O, is either
supplied by the machine automatically (in which case the
fumction cdmputed is the charucteristic solution) or
follows from u(n) = v'(n) and uv! - utv:= 1 (in which case
the gharecteristic solubion could be made out- of the
compubed fumction and its. reflection; U'or 7).

particular, ia (11), S.= & 1 implies either A = 1 or A = 03
and éosideriag the Hmuﬁn, there are four - and only
four - ways im vhich this may occurs at s = n/2, either
ome of u, u', v or v! must be 0. To establish the periodicity
of the’ tulction in qnestion it thea remaias only to reflsct
is (ﬂlﬂy or oddly, as the case ay be) about n/2. Thus

" the chaacteristic m pama " its ngum- and it is

Ss funotion is ' is tnquency is denoted by
-l R .' : 2x L ompy,a(s,q)
L . -.: e S | . 9  cap(3,9)
1 v . 2 8o, (3,9)
<l r - 2n a1 30“1(3,41)

These are the lhmdu functions of htognl order. The
notation 0o, se is read "elliptic cosime” and "elliptic sime®.
The subsorips, or the prder of the fumction, is the order of
the imstability region bordered by the characteristic
oconditiom in question. While these.fumctions have = or 2x

- as their exact period, much more prominemt (amd from the view-

poiat of physical sigaificance, more important) is the oscillation
of the frequency n; Visy, of the order-of the instability region.
Thus in “o(l,x a oonspicucus feature (in addition %o an

oscillasion of period n) is the constant term; and ce (s,q)
rather resembles cos(as) im its appeirumce, while se (s,q)
mdha sin(ns)e The fumdamental frequemcy is q.ufeatod

_cﬂyuhnto,wueh 1k the comstant ters of 08y, nyo-

) caoﬁuhnhdhuuibh. AtQto, e.‘ndn‘hdaed

duninto (nmnatinn u:ldo) to coa(u) nd sin(ns).

13




With the trigonometric and the hyperbolic functions
of similar names, ce and se share only the basic properties
of evemness and oddness, and of a mutual orthogonality.
They do no$ have the convenient properties of sin, cos,
sinh and cosh as far as their deriwatives, or the relations
between their squares, are concerned.

It is important to note that ce,, and se, ars not the

solutions of 1deub1cal]y the same equation. Each instability
region of order n, n ¥ 0, is bounded - for the same q - by
two charecteristic conditions, with different values of a

of (1); and each characteristic function belongs to one or

as positive (as is conventional), ce_ belongs to the “far®

side of the instability region (the greater value of a), and
se  belongs to the "near" side (the lower a). The sifuvation

would be reversed if q were reckoned as negative, vis,, if'
(1) were written as y" + (a + 2q cos 28)y = 0; but the shapes
! of the two curves would then be exchanged: vis., se; would then

look 1like the ce, solution of (1), and vice versa, except for

the change of phase; i.e., the change would amount to shifting
the origin of & by n/2.

In fact, it is much easier to consjder the physical
significance of these two solutions. Thus, the odd se is
the more economical of the "static" stability, as represented
by as vhen the spring stiffness is a minimum se, passes '

through sero, i.e,;, is in a phase when the spring stiffness
does not matter anyway; and se; utilises the mximm of the

spring stiffness in full; i.e., the mxinum of se, occurs !

when the spring 'stiffness is a maximum. In contrest, the
even ce, is the more wasteful of the static stability, or

is the more sluggish function; o wit, it falils %o utilize
the greater valus of a to inorease its frequency: it passes
through sero when the spring stiffness is a maximum, and
therefore dwells longer (or - more exactly - dwells just as
long, in spite of the greater value of a) at eash swing from
sero. Thus, as we proceed across an instability region in
e direction of increasing a, there is no change in
frequency, but there is a chinge in phase, as the excess

of static stability is being used less effectively.

This explanation can be extended to higher orders of the
instability regions; but there the split in the static
stability values matters progressively lass and less,

other of these two conditions. Specifically, if q is reckoned™



The sero-order region is rather an exception. It is
bounded only on the “far" side, and las only the even
solution ce, of period n (1.9,, of twice the frequency of

001).; there is no uo(s,q). A change of +q to -q merely

shifts the origin of 3 from the minimm to the maximm of
ce,(2,a).

The characteristic solutions being either even or odd,
their reflections fail to furnish linearly indspendens
solutions. This is not !in any contradiction to the Floguet
theory, since the existencs of both auxiliary functions :}
and h are by no means essential to'that theory. Thus,

(2) Is to be applied to g(z).only, and S is to be 1, there
merely follows that B = 0,

‘The characteristic solutions definitely belong to (and

in a sense, are ancestors of) the stability regions.
Specifically, if we restrict the period to n (S = 1), there
arise only the bordsr lines of the even regions of instability;
if we rslax this to allow 2n (S =-1), there arise the border
lines of odd regions of :I.mtabﬂitﬁ‘ﬁ to n (S =1), the
lines of = 1/23 4L to 3n (S= o ), the lines of p = 2/3,
ot8c., until all stability regions are densely shaded. The

. even and odd stable solutions are, in fact, called Mathieu
functions of fractional order n¢f. The discontinuity of this
shading due to the possibility of an irratiomal P would
appear, to a "techmologist®®, a rather technical matter.

With the unstable solutions the characteristic solutions
share, of course, their predominant frequency; but they are
_ distinguished by their very definite phase relations, vis.,
their evenness or oddness. In fact, the even and 0dd un-
stable sclutions (ouwr u and v) are denoted by ceu and seu
(u for *unstable®), with an"index n ¢ pu; where the two
conditions (two values 'of a for the same y and gq) can be

distinguished™ by writing g or fie

Curiously, the uniqueness of the characteristic solutions
(vis., the absence, for a given a and g, of a second periodic
solution of the same frequsncy).seems $0 lave been proven,
by Ince, only as late as 1922,

Referenos 1, page v,
Reference 1, page 88,
; % Beference 1, page Ul.

-




(2) Secular Solutions, With characteristic conditions, as we

have seen, the charecteristic solutions require particular

‘(either even or odd) initial conditions. But from the

initialevalue point of view the non-characteristic initial
conditions are just as legitimate; in fact, these "second
non-periodic* solutions, to which such conditions give
rise, have been given a standard notation: when u is
een(z,q), the odd solution v is denoted by fen(z ,q), and

vhen v = sen(s,q), the even u is denoted by ggn(z,q); the

English names are apparently lacking. These solutions

are orphans in the sense that they arise only at the
charecteristic conditions, yet fail to satisfy the basic
requiremeht of the bowndary-value theory, which is the
reason for these conditions: they are neither periodic,

nor stable, nor do they obey the Floquet relation (2).

On the other hand, they do obey an analogous relation, which

apparanﬂy* should be called the Ince relation:
te,(3,q9) = C (q) 3 ce (3,q) + £, (3,q) (12)
ge,(3,9) = 5,(q) 3 se,(3,q) + g,(2,q)

where cn and sn are, for a given q, constant coeffioients,

and the functions tn and g, are periodio, of the same period

as the corresponding characteristio functions, and are,
respectively, odd and even, Just as (2) has the more basic
form (6), the more basic form of (12) states that the
increment of fon(s,q) or gon(,lpq) over any period n (or 2n)

is a constant, i.e,, the increment is a periodic function
of s. This relation being of a lesser gersrality than the
Floquet's one, its proof is here omitted; it may only be
remarked that the proof utilises reflectability as well as
the trenslatability (since the reflectability is already
inherent in the fact that ce, and se, are symsetric). These

solutiohs are obviously analogous to the secular solutions
(such as xe*) of linear differential equations with constant
coefficients.

~ The lack of periodicity of fe, and ge, 1s apparent: for
small 3 they have the pimse of f and g, 1.e., are "at 90°
to e, or se , as the case my be; while for large s they
approach the phase of ce or se, mtietny. The lack
of stabllity, as s approaches ¢o, , is made obvious by the

L ]
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presence of the factor.s. Since the ratio of any tw
successive maxima of fo and ge, approaches 1, for all

practical purposes, theae solutions tend to ce, and se,
of some large amplitude.

The secular solutions seem to constitute the border
line between the slightly unstable solutions and those
"stable" solutions which lead to large amplitude of y(z) for
large s. So to say, as we pass across a characteristic
conditIon from the stable region into the unstable one,
the beats my gensrally grow in magnitude indefinitely,
and at the same time receds indefinitely; within a large
finite interval of s the solution may fimally becoms ine
distinguishable from a secular one; thereafter it will
pass into an exponentially unstable solution. If, how-
ever, the phase of the initial conditions is exact.]y
right, ths beats may be moderate in magnitude, will pass
through the characteristic solution, and then shrink
exponentially,

Obviously, fe, and ge  can be extended indefinitely
if the coefficients G, and 8, and the functions f and g

are determined in a finite interval: specifically, if the
calculations are extended to a point at which either one
of £, £1, gu'g' is serv.

Of course, the occurrence of the chnmctoriatic

oconditions in the numerical calculations is either in

the nature of an accident, or must be imposed specifically.
While some of the available caloulations pass quite close
to a characteristic oondition, none of them do so exactly;
for such an &b ovo d-rintim, check and inspection of the
characteristic conditions s not been the purpose.. It is
newvertheless oconceivable that extensive data on oe n? 50

tn’ & C, and 8 can be procured. Incidentally, th.

fuctions in question seem to be tailor-made for an
“empirical® amlysis in Fourier series, so that each one
of these functions of s may be given in a compact column
of Fourder coefficients. The method will be free from the
difficulties of oonvergence with large walues of g.

It is interesting to note an empirical obserwation
made in the construction of the contowr plots of S in the
instability regions: in vicinity of the characteristic
oonditions 38/3a and 38/3q appear to be infinite. If
proved, this will mean that an accurate determination of
the clarecteristic conditions might be aided by tho sensitivity
ot!toth.cbioootumdg.
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Similarly, no information is now availabls on the
curious question, whether there exist some convenient
relations between the periodic functions ce,s 88,5 fn’ &g,

and their derivatives. The interpretation of tbe solutions
in terms of infinite series is extremely laborious, and

the empirical numerical approach might be ¢f a conziderable
v‘l“. :

PERIODIC KERNELS

The outlined and the available machine computations have been congermed
mainly with the determination of the Floquet ooefficien of (2), ox’ of
the "amplification factor" S of (6). The solutions which can be extended
indefinitely in this manner, of course, are only the normal (Floquet)

modes™ but the readily obtainable auxiliary functions, viz., ths even
u and the odd v, gensrally are not the normal modes (in spite of mving
The standard notation 002 OF,,s etce ) Naturelly, a method of

extending the solutions, to be complete; should include a specification
of either a mmal mode, or - preferably - of the function #(z) of (2).

To specify a normal mode, it remains merely to carry out the operations
(8) and 8). If one normal mode is Au + Bv, the other one is Au - Bv, both
wvith a possible arbitmry (complex) factor.

In particular, with the unitary conditions on one end of the n =
interval, (8) becomes

A/B = ¥(x)/(8 - u(n)) (13)

which may be transformed, with the aid of (10) and the Wronskian, into
forms: involving either only u or only ¥

AB = lzlu'(t)V!z -1 avin)//B% -1 ()

With the tmitary oonditions in the middle of interval, as inm (11),
(8) becomss o

M= v(n/2)(s + DxR)E =) T (15)
At a charecteristic condition a -nor;'-l«-,ocb is either Au or Bv;
in fact, that A/B is infinite when u is ce,is obvious from (1i); timt
A/B is sero when ¥ 1s se_ can be seen from (13), for then u(s) is ge (3)
and is not periodic, and therefore u(x) ¢ 1.

* Bot to mention the secular (Ince) modes,
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The auxiliary functions u and v being real, in the unstabls regions
A/B and the normal modes are " real; ~1t does not particularly nelp matters
to introduce the complex spirals u ¢+ iv or L iyz. It may be remarked

that the normal modes, as well as @(2), are then nelther even nor odd =
changing as they do across the unstable region from an odd se, to an even
o8,

In the stable regions a convenient visualization is possible. Since
the vector S has a magnitude of 1, the vectors S+ 1 and S - 1 in (15)
aremtually perpendicular in the complex plane, and therefore the rmatio
A/B is a pure imaginary; thus the normal modes cannot be real. The
convenient feature is that the complex helices representing these normal
modes have u and v as their rectangular components - except that one
of these coordinates must be stiretched in particular ratio (the magnitude
of A/B), and that the whole helix may have an arbitrary scale and phase
(that of either A or B). In other words, if we put 4 = 1, u can be
oonsidered as simply the real componant of either one of the complex
oonjugate normal modes; or, if we put B = 1, v can be considered as
simply the imaginary component of one of these modes (the other helix
being a mirror image of the first). The points on the helix of a
normal mode corresponding to s, s + n, = + 2n, etc., indeed lis on
uniform helices; but the whols helix, nevertheless, is not a unifom
ons - bscause of the oscillations of the magnitude, and the non-uniform
rotation, of the vector #(s).

‘The speoification of @(s) is preferable to a specification of a
normal mods over a complets period, for tw reasons. In the unstable
regions y(n) ¥ ¢ y(0), not is y'(n) the sane as » y'(0), 80 tlat if
y(3) were to be expanded in Fourier series®, it must be reckoned as
discontinuous. In the unstable regions it is entirely impractical to
tabulate y(s) over the complete period (2sn), while a reconstruction
of y(s) from the data in the interval of length x amownts to the use
of the function #(s).

There exist a n-ber of ingenious methods of determining @#(s).

Thus, apptmt]y in 191} Whittaker developed a Fourior series in
tems of a new parameter ¢, vhose physical significance is in the
nature of a shift in phase; in terms of ¢ and q, by the use of a

x

The function #(s), obviouwsly, is particularly suited for a Fourier
series representation. %hile ths purpose of thia report has been
to avold the infinite series, the Fourier series, of course, hold
an exceptional place among such - because of the strong physical
significance of their ocoefficients.

-

e Reference 1, p. 70.




number of auxillary series, it is possible to compute the coefficients
a and j4, as well as the Fourier coefficients of ;‘(’;). Mclachlan gives
vhat may be called Fourier-Mathieu series, in terms of ce_, se,.

Particularly useful, perhaps, am the recursion frrmmlas for ths Fourier
coefficients of @(s), which leave an a priori computation of only fowr
scalar Fourler coefficients necessary, the remainder being easily
generated by the recursion.

Nevertheless it appears that for practioal purposes there remains
room for the less imaginative (though heretofore mare laborious)
“empirical® approach: viz., for a tabulation of numerical data, through
oomputing @ as (Au ¢ Bv)e™P®; and, if desired, decomposing this function
in the Fourier series numerically. Such an undertaking (first outlined,
appareatly, by Breinerd) is outside the scope of this report; but the

1500 ENIAC tnjecborieah’s are available to those who would embark tpon
it. In such an mdorba‘iing, the scalar components of the oacillatory
Fourier integrand @#(s)e'P%, p = 1 and 2, can be readily get from the
avallebls data at 31 points in the interwl n/2 of 33 the higher-order
coefficients (p = 3, L...) can be got by recursion. Incidentally,

the interpolation (if desired) might be facilitated by reverting

to polar coordinates: if § = rei®, both the radial and the angular
coordimtes of the integrand, r(z) and 6(s) + ps, are smoother

functions of 3 than its rectangular coordinates are.

A similar empirical approach can be readily wrked out for the
Inoce functions fn and 8qe However, since no available solutions occur

exactly at the characteristic conditions, soms interpolation across’
these conditions might be neoessary; and in view of apparently peoculiar
bebaviour of the solutions in this vicinity, the subject appears to
deserve a separats study, as well as some additional numerical data.

As ws mentioned befors, the predominan’ frequency of #{s) in the
unstable regions (including the charmcteristic conditions) is that of
the ordar of the region. It is natuml to expect that in the stable
regions the predominant frequeancy of #(s) is that of the adjoining

lover-ordsr wstable region, the factor oifs midng up the differ-
ence betweén that frequency and the predominant (intermediate) frequency
of the normal mode,

An interesting question is whethsr at some conditions the variation
of ff my not amount to the clange of phase only; off-hand, this does not
a possible, since the shape of § must also change from the economical
(Qeptokurtic) se, to wmsteful (platykurtioc) co .

* Referenoe 1, 1. 65




REMARKS

The Mathieu equation (or the Hill's equation with an even J) is
particularly interesting because it constitutes a border-line between
the linear and the non-linear differential equations. Specifically,
at the characteristic conditions of the first-order instability region
(and with a further stipulation that 2q<a) the "spring stiffness"
coefficient of (1) is uniquely related to the magnitude of the
characteristic function. The mechanism of the oscillation then is
precisely the same as if this coefficient were a function of e, or

ce;3 1.e., as though the equation were non-linear, y" + yF(y) = 0,

In particular, on the "near" side of the instability region, which
gives rise to se,, the stiffness inoreases with the deflection (as

in a tension spring), i.e., the curve of yF(y) is convex toward the
axis of y; while ce,, being less economical of the static stability,
represents an osc tion such as might be caused by a compression

apring*. The periodicity of o8, and se, is in agreement with the

feeling that a system described by such a non-linear equation (F positive)
is consérvative and has no damping. The existence of two values of the
static stability a for the same frequency confims the feeling that the
average value of F(y) is not a good one for ths estimte of frequency,

or that the shape of F(y) can affect the frequency. The usefulness of
such an analogy, of course, is limited. '

- Particularly interesting is the mechanism of the shrinkage and
rowth of oscillations in this first-order region near exact rescnance
a=1l). The ahﬂ.nkin? mode then is receding from the equilibrium when &
the spring is stiffer (n/hsss2x/h), and is approaching the equilibrimm z<
vhen the spring is weaker (-nﬁ ¢s {n/l). The result is a damping of the
oscillation, somewhat similar totimt produced by a damping force
rtional to the welocity y'(s) - with the important differencs,
that in the swing from one extremum to the next one, this effective
damping force is applied to the shrink Mathieu mode, so to say, in
two spurts instead of one: vig., at y(z) = O there is no force, while
in the damped hammonic motion the damping force is maximum at that
instant. The frequency of the oscillation then, generally, is not
affected. The extremum occurs at s = 3n/k.

The situwation n exactly reversed for the growing mode: it recedes
from equilitrium at the time when the spring is the weakest, and returns
when the spring is the stiffest. The extremum occurs at = = n/k..

* The analog implied here is a familiar one: a point mass slides on a
table and is comnected by a spring passing through a hols in the table
to a spring which is fixed on the other end. A familiar ballistic
instance is the non-linearity of the righting torque on a fine-stabilized
projectile. ‘ oo IR »




Again, there is little net effect on the frequency. Nate t}pt both
norml modes are- noither even nor odd, ;

Consider then the situation when the extremum of the osd.llat:lon
coincides with an extremm of the spring stiffness, i.e., occurs at
8 = 0 or x/2, Then there is no damping: we would say that both normal
modes are present in equl proportions, and the shrinking of one ‘is:
offsetting the grvuth of ‘the ottnr. However, the phase of the ' "
oscillation then is not stable, vis., this phase relation cannot be
saintained. In particular, lst the extremum of the oscillation occur
at the maximum of the spring stiffness (at =/2): the oscillation then
is the more economical of the static stability a, which in this case
is greater than that corresponding to sel; therefore the phase of the

oscillation will get ahead of the phase of the spring stiffness, or the
extremm of y{z) will shift toward s = n/li. Now let the extremum occur
at the minimum of spring stiffness (at s = 0):' the oscillation then is
analogous to but lacks the margin of the static stability associated
/ with the wastef ce, . The phase of the oscillation then will hg ‘behind

that of the spring stiffness, and the extremum of y(z) will shift toward
s = n/} again, This means that in both cases the growing mode will ,
predominate. It can be said that the phase of the shrinking mode is in
an unstable equilibrium, while the phase of the growing mode is stable,

Next, it is interesting to inspect the mechanism of locking into
resonance. Ist us consider;, for instance, the case of statio stability
a being less than 1, but still greater than that which givoq rise to 301
Tin the conventional notation, the case a,22 1), Let us-inspact .

the four representative (but now no longer normel) modes which have
their extrema at 3 = o, n/l, #/2, and 3n/4) (covering the period » of
cos 2§). We may call these modes, respectively, "Wasteful®, “Orowlng®,
"Eoonomical", and “"Shrinking". It is nmaturel to represent’ these ‘phase
relations as pointa of the compass (using, perhaps, the teim "Nourishing®
or"ascent", etc, far "Growing® to complete the mnemonic symmetry),
Obviouwsly, t-ho oscillation of the W-mode will lag (vis., the vector
representing its phase will move clockwise on the diagrem), On the
other hand, the E-ossillation will advance (move counterclockwise).

The 8- and G (or n)-o!ﬁmtiom vill tend to have the “expected -
naturel" frequency » and Will thsrefore lag. Thus thqn will
eventmally ensus 1n t.ho N-E quadrent a stable growing modej.’ whih

in the S-E quadrant thére may exist,with its phase in umtlbh
equilibrium, a lhrinking ‘mode, Fora-o a5 both modes vd.ll ‘tend t.o ael.

Sh:l.hrly, ifavl bnt less than that which gives rise to col

(denoted by bl) s the M- and 5~ modes will advance in phaae, and the’

stable modes will exist in the l-ﬁ and S-W qmdrants, undiu ‘to W-mode
(ool for 8 bys  Since the stable modes are. off the N-S: phqso, t.hoir

" rates of gro-t.b and -hrmn- (u) are mtmny u.mahm

! 0
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It will be noted that these non-normal modes have a changing
frequency; the beats between these frequencies my produce other,
"local®, frequencies. In particular, it is natural to expect that
in a finite :I.nterval/gf gz the apparent "local" frequency might be
closer to that of a-/<, rather than to the resonant frequency, 1;
this would be explained by the shift of phase resulting from the
exchinge of the magnitudes of the normal modes. The resonant
frequency of 1, which characterizes the whole region of instability,
is manifested only as the frequency of the surviving mode,.

DESCRIFTION OF AVAILABLE TRAJECTCRIES

¥hile a generous amount of computation examples, tables, graphs
and charts is given in Mclachlan's book (including, particularly,
Dr. J. Comrie's iso-f=-puchart, or the contour plot of iso=p and iso-u
lines on the Ince's a-q chart), it is here desired to describe, in
particular, two sets of ENTAC data:

(1) Brainexd's dntah. The equation (1) is written in the fom
dzy/atz + €L+ kcost)y=0

80 that ¢t = 2g, k = «2q/a (origin of z shifted by n/2), €= a/li. The
auxiliary functions g and h (our u and v) were computed at intervals
0004 of t, to 10 places (are recorded and are apparently available,
together with values of g' and h!, at intervals of .l of t, probably
to 7 places; cited to 5 places) for € = 1, 2, 354000.4410 and k = 0,1,
0e2,0000000le0s Also cited are values of u (which in our notation is
B +ip) and of M (in our notation B/4i). While the mesh of k's seems
to be.amply fine, the mesh of €'s seems rather coarse; most points
fall in the stable regions. An /€ vs k chart(i.e., the clart of

«2q/a vs SM/N is outlined. An extremely laconic summary of theory
from. the viewpoint of electrical engineer,

(2) BRL's data®. The equation (1) was used in the fom

4d2Y/d(t2 + (1/4) (0 + ycos t)y = O, ,

2
8o that ¢ = 23, y = =29, origin of 3 shifted by n/2, n = a. The work
sheets are awilable. Calculations were made for approximately 680

combinations of n270 and v, as mrksd by circles on Figure 2, The
wrk sheets state ths two values of S in the wnstable regions, and
the value of A of (11) in the stable regions,




DESCRIPTION (F THE CHART

The attnihed 1s0-S-B chart is essentially the same as COnr:le'a o
i80=f=pp chart™, with the following differences: '

(1) The contour lines 4in the regions of instability are for tho

rowmd values of 8 = e"", rather tlun for round values of i . ‘A8 1t 2
was mentioned before, S and (6) seem more basic than p and (2); besides,
S is easier to compute than u, is also much easier to vismlige, and -
protably - easier to use. Incidentally, it may appar tlat in order to
complete the symmetry, in.the stabls regions it might have been: proper
to cite the valuss of the.angls Bx, rather than of the coefficient B3
however, in that case the factor n is merely the atatement oI the nost
relevant wmit (half-turn mma of radian). ,

(2) The scals of a‘useisaa is aJ'/ (rather than a), designated ‘uy

this is Brainerd's "e"’z.\ This scale was suggestad by Hchcnlan,

t used for the first time, it appears, by Breinerds. The advantages
of thls scale are abviouss the number n has a simple physical
significance; the most important region of instability , the first-order
one, can be magnified on the chart; the less important regions are '
shrunk; the scale of B along the axis of abscissas is wniform. However,
there are also certain disadvantages: vis., the region of atatic
instability, a <1, is pertoroo ucludad. o g o

(3) The ordinate is -r/n s OF ~2q/a, or &'l:l.nerd'a k, thr thn Yy -
or 2q. This again seems to have been suggested by Mclachlan, who pointed -
out that in certain problems covered by Mathieu theory q/a ms a better
plvaical significance than qs 1.0., it is often desirable to inspect the
line q/a = const rather than the line q = comst. In particular, With the

change of the scale of abscissas from a = n° to n, the line q/a s const
becomes a parabola. 7he readsr who prefers kl’.201- ¥ as the parameter my
easily construct, or use, the lines of vy = const. The convenience

of the scals of k is that the regions of higher order of instability are
shrunk, and the Tirst-order region can be mgnifieds thus, more information
is brought within the rectangle of the clart. However, all intercepts

of the characteristic lines with the line n = O nov recede to infinity,

and these lines becoms asymptotic to the axis n = 0, Thus for certain
problems of !hthiou thoory the iso=S5-f chart cannot rephco tho ho-p—u

It should be noted tht Brainerd's and BRL's shift of tho or:lgin
of 3 by »/2, 1.0., their use of a negative @ in (1), does not matter
atmu far as this chart is concerned. However, ss a msre mtter

of adhering to a st.l.mhrd notation, it should be noted that at the
charecteristic conditions Brainerd's g, for instance, does not
approach o.n(s,q), as might be expected off-hand; rather, 1t appmchu

"n(’ - 2/2,q) vhin n 1s odd, and oon(s - a/!,q) vhen n 1is om;
similarly, his h appmchu =08 (. - a/:,q) utn n odd, and “"n(’ - a/z,q)

&
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vhen n is pven. The reader is further reminded that throughout this
elementary review we are not. concernsd with the normalization of the

characteristic fwictions, while in the literature’ definite nethods

of atandnrd:laed normalization! have been proposed.

In the study of the unstable regions a simple visualiszation of
the chart is possible, The stable regions may be visualizeld . at sea
level (S = 1), and the wnstable regions, as mountain prmntorlea
rising out of that sea. It is particularly interesting to inspect the
domain k<1, viz,, vhen the spring stiffness is always positive. In
this domain the firsteorder region, or the ridge, is readily seen to
be most important, particularly at lower values of k; its crest, or
wtershed, is practically straight, while the higher-order regions
termimate in sloping sand flats (and that in spite of the change of
scale from q to k3 on the Mclachlan-Comrie chart this is even more so).
On the other hand, for k>1 the higher-order regions (a domain which
is way off the Mclaghlan-Comrie chart) apparently become more
important than the first-order region. Also, as was mentioned above,
at the edges the surface of these ridges seems to be vertical, even
with the higher-order regions (as though the shores of even the sand-
flats were washed off).

Soms visualization is alsa possible for the stable regions, although
it becomes quite clumsy if we would attempt to blend it with the
visualization of the unstable regions (this is natural, for S in the
unstable regions and the angle Pn in the stable regions have different
physical significance). It seems best to limit such visualisation to the
proximity of the shore line; then iso-8 lines are contowrs of the sea
bottom. Again, it seems to be an empirical fact (possibly useful in a
study of the vicinity of the charecteristic cr: .iticns) that at the shore
~lines the surface of this bottom is vertical. In such a study, then,it
might be adwantageous {0 revert from iso-S lines to iso=iyi lines,

The accuracy of this chart is severely limited by the crude
graphical interpolations used, and does not d justice to the seven-
place ENIAC data.

The writer is indebted to Mrs. Florence B. Goggina for the

construction of the clnrts.
Py
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